
CS 6220 Spring 2011

Homework Set Five

Differential Equations

I. Discretization of Ordinary Differential Equations

There is an almost legendary system of ordinary differential equations:

dx

dt
= Bx− Cxy

dy

dt
= −Dy + Cκxy

(1)

known as the Lotka-Volterra system, used to model population dynamics. Concentration of prey x
multiplies in isolation, while being consumed by predator having concentration y. Positive constants
are birth rate B for x, measure of the frequency that predator catches prey constant C, death rate for
y due to lack of prey constant D, and κ (warning: this is gruesome!), a share constant matching how
many unit predators it takes to devour a single prey. Vito Volterra had the idea in 1926 to set Darwin’s
idea of “survival of the fittest” to differential equations in order to describe fish and shark populations,
while Alfred Lotka used these equations in 1925 to describe oscillations in chemical reactions. (For your
information, lotke literally means “potato pancake” in Yiddish.) Lotka-Volterra attempts to accurately
quantify Darwin’s principle of natural selection as a physical law. Lotka’s idea was that evolution favored
selecting according to the “ maximum useful energy flow transformation.”

Consider a system with κ = 1, B = .4, C = .5 and D = .45, having initial conditions x(t = 0) = .1
and y(t = 0) = .2. Plot x(t) and y(t) for t long enough you can judge the asymptotic behavior as
t → ∞. Your plots should show x and y separately and together in a “phase portrait” in the plane of
the trajectory (x(t), y(t)).

1. Provide a physical interpretation of the observed behavior.

2. Experiment with other initial populations where one or the other x and y populations eventually
becomes extinct.

3. Find nonzero initial populations that never change.

4. You may, if you wish, experiment varying parameter constants κ, B, C, D.

You should integrate (1) using third order Adams-Bashford iteratively given by

Ui+1 = Ui + h((23/12)Fi − (4/3)Fi−1 + (5/12)Fi−2) (2)

where h is ti+1 − ti, U is the column vector of x and y, and F is the right hand side of (1). Subscripts
refer to evaluation at time ti.

Note that with U0 given, we are unable to evaluate U1 and U2 from (2). We recommend you use Heun’s
(second order) method which will ensure that the values obtained for x1, y1, x2 and y2 fall within the
Adams-Bashford region of stability. Heun’s method has the form

Ui+1 = Ui +
h

2
(Fi + F̃i)

where F̃i = F (ti+1, Ui + hFi).



II. Forward Difference Discretization of the Heat Equation

The parabolic partial differential equation

ut = uxx, 0 < x < 1, 0 ≤ t, (3)

subject to the initial condition
u(x, 0) = sin(πx), 0 ≤ x ≤ 1,

and Dirichlet boundary conditions
u(0, t) = u(1, t), 0 < t,

is an example of the heat or diffusion equation. It has exact solution

u(x, t) = e−π
2
t sin(πx).

The Forward Difference Method applied to (3) yields the recurrence

uk+1

i
= uk

i
+

∆t

(∆x)
2

(

uk

i+1 − 2uk

i
+ uk

i−1

)

, i = 1, . . . , n ,

where spatial grid point xi equals i∆x, i = 0, 1 . . . , n + 1, with ∆x = 1/(n + 1), temporal grid point
tk equals k∆t, k = 0, 1, . . ., and where uk

i
denotes the approximate solution to u(xi, tk) at grid point

(xi, tk).

1. Using FDM solve (3) with ∆x = .1 and ∆t = .0005.

2. Plot the computed solution as a three-dimensional surface over the (x, t) plane.

3. Determine the maximum error in your computed solution.

4. Experiment with various spatial grid sizes ∆x and characterize the error as a function of ∆x by
plotting on a log-log scale the maximum error as a function of ∆x.

In order that your solution satisfy

Consistency: the local truncation error goes to zero
Stability: approximate solutions remain bounded

a very pretty (and not difficult) analysis shows that

∆t ≤
(∆x)2

2

must be heeded as you experiment with different ∆x.

5. Repeat 1., with ∆x = .1 and ∆t = .01. Please discuss the observed behavior and possible reasons for
its occurrence.
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